A nanopore interface for larger bandwidth DNA computing

  • Zhang, D. Y., Turberfield, A. J., Yurke, B. & Winfree, E. Engineering entropy-driven reactions and networks catalyzed by DNA. Sci. (80-.) 318, 1121–1125 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Qian, L. & Winfree, E. Scaling up digital circuit computation with DNA strand displacement cascades. Sci. (80-.) 332, 1196–1201 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Sci. (80-.) 314, 1585–1588 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Cherry, Okay. M. & Qian, L. Scaling up molecular sample recognition with DNA-based winner-take-all neural networks. Nature 559, 370–388 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Soloveichik, D., Seelig, G. & Winfree, E. DNA as a common substrate for chemical kinetics. Proc. Natl Acad. Sci. USA. 107, 5393–5398 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, Y. J. et al. Programmable chemical controllers constituted of DNA. Nat. Nanotechnol. 8, 755–762 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Srinivas, N., Parkin, J., Seelig, G., Winfree, E. & Soloveichik, D. Enzyme-free nucleic acid dynamical techniques. Science (80-.). 358, (2017) 10.1126/science.aal2052.

  • Zhang, C. et al. Most cancers analysis with DNA molecular computation. Nat. Nanotechnol. 2020 158 15, 709–715 (2020).

    CAS 

    Google Scholar
     

  • Qian, L., Winfree, E. & Bruck, J. Neural community computation with DNA strand displacement cascades. Nature 475, 368–372 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, D. Y. & Winfree, E. Management of DNA strand displacement kinetics utilizing toehold alternate. J. Am. Chem. Soc. 131, 17303–17314 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology utilizing strand-displacement reactions. Nat. Chem. 3, 103–113 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made from DNA. Nat 2000 4066796 406, 605–608 (2000).

    CAS 

    Google Scholar
     

  • Qiu, X., Guo, J., Xu, J. & Hildebrandt, N. Three-dimensional FRET multiplexing for DNA quantification with attomolar detection limits. J. Phys. Chem. Lett. 9, 4379–4384 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Y, W. et al. Speedy Sequential in Situ Multiplexing with DNA Alternate Imaging in Neuronal Cells and Tissues. Nano Lett. 17, 6131–6139 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Guo, J., Wang, S., Dai, N., Teo, Y. N. & Kool, E. T. Multispectral labeling of antibodies with polyfluorophores on a DNA spine and software in mobile imaging. Proc. Natl Acad. Sci. USA 108, 3493–3498 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ju, J., Ruan, C., Fuller, C. W., Glazer, A. N. & Mathies R. A. Fluorescence power switch dye-labeled primers for DNA sequencing and evaluation. Proc. Natl Acad. Sci. USA 92, 4347–4351 (1995).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ashkenasy, N., Sánchez-Quesada, J., Bayley, H. & Ghadiri, M. R. Recognizing a single base in a person DNA strand: A step towards DNA sequencing in nanopores. Angew. Chem. – Int. Ed. 44, 1401–1404 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Stoddart, D., Heron, A. J., Mikhailova, E., Maglia, G. & Bayley, H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a organic nanopore. Proc. Natl Acad. Sci. USA. 106, 7702–7707 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gu, L. Q., Braha, O., Conlan, S., Cheley, S. & Bayley, H. Stochastic sensing of natural analytes by a pore-forming protein containing a molecular adapter. Nature 398, 686–690 (1999).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rotem, D., Jayasinghe, L., Salichou, M. & Bayley, H. Protein detection by nanopores geared up with aptamers. J. Am. Chem. Soc. 134, 2781–2787 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ouldali, H. et al. Electrical recognition of the twenty proteinogenic amino acids utilizing an aerolysin nanopore. Nat. Biotechnol. 38, 176–181 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jain, M., Olsen, H. E., Paten, B. & Akeson, M. The Oxford Nanopore MinION: supply of nanopore sequencing to the genomics group. Genome Biol. 17, 1–11 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ding, T. et al. DNA nanotechnology assisted nanopore-based evaluation. Nucleic Acids Res. 48, 2791–2806 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ohara, M., Takinoue, M. & Kawano, R. Nanopore logic operation with DNA to RNA transcription in a droplet system. ACS Synth. Biol. 6, 1427–1432 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ohara, M., Sekiya, Y. & Kawano, R. Hairpin DNA unzipping evaluation utilizing a organic nanopore array. Electrochemistry 84, 338–341 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Yasuga, H. et al. Logic gate operation by DNA translocation by organic nanopores. PLoS One 11, e0149667 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhu, Z., Wu, R. & Li, B. Exploration of solid-state nanopores in characterizing response mixtures generated from a catalytic DNA meeting circuit. Chem. Sci. 10, 1953–1961 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kong, J., Zhu, J. & Keyser, U. F. Single molecule based mostly SNP detection utilizing designed DNA carriers and solid-state nanopores. Chem. Commun. 53, 436–439 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y., Zheng, D., Tan, Q., Wang, M. X. & Gu, L. Q. Nanopore-based detection of circulating microRNAs in lung most cancers sufferers. Nat. Nanotechnol. 6, 668–674 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tian, Okay., He, Z., Wang, Y., Chen, S. J. & Gu, L. Q. Designing a polycationic probe for simultaneous enrichment and detection of microRNAs in a nanopore. ACS Nano 7, 3962–3969 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, X., Wang, Y., Fricke, B. L. & Gu, L. Q. Programming nanopore ion movement for encoded multiplex microRNA detection. ACS Nano 8, 3444–3450 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • An, N., Fleming, A. M., White, H. S. & Burrows, C. J. Crown ether-electrolyte interactions allow nanopore detection of particular person DNA abasic websites in single molecules. Proc. Natl Acad. Sci. USA. 109, 11504–11509 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schibel, A. E. P. et al. Nanopore detection of 8-oxo-7,8-dihydro-2′-deoxyguanosine in immobilized single-stranded DNA by way of adduct formation to the DNA injury web site. J. Am. Chem. Soc. 132, 17992–17995 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cardozo, N. et al. Multiplexed direct detection of barcoded protein reporters on a nanopore array. Nat. Biotechnol. 2021, 1–5 (2021).

  • Chen, X. Increasing the rule set of DNA circuitry with associative toehold activation. J. Am. Chem. Soc. 134, 263–271 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • GitHub – nanoporetech/kmer_models: Predictive kmer fashions for improvement use. https://github.com/nanoporetech/kmer_models.

  • He, Okay., Zhang, X., Ren, S. & Solar, J. Deep residual studying for picture recognition. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Sample Recognit. 2016, 770–778 (2016).


    Google Scholar
     

  • Roush, S. & Slack, F. J. The let-7 household of microRNAs. Tendencies Cell Biol. 18, 505–516 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen, S. X. & Seelig, G. An engineered kinetic amplification mechanism for single nucleotide variant discrimination by DNA hybridization probes. J. Am. Chem. Soc. 138, 5076–5086 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tabatabaei, S. Okay. et al. Increasing the molecular alphabet of DNA-based information storage techniques with neural community nanopore readout processing. Nano Lett. 22, 1905–1914 (2022).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Mathé, J., Visram, H., Viasnoff, V., Rabin, Y. & Meller, A. Nanopore unzipping of particular person DNA hairpin molecules. Biophys. J. 87, 3205–3212 (2004).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Celaya, G., Perales-Calvo, J., Muga, A., Moro, F. & Rodriguez-Larrea, D. Label-free, multiplexed, single-molecule evaluation of protein-DNA complexes with nanopores. ACS Nano 11, 5815–5825 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Derrington, I. M. et al. Subangstrom single-molecule measurements of motor proteins utilizing a nanopore. Nat. Biotechnol. 33, 1073–1075 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Adam, G. & Delbrück, M. Discount of dimensionality in organic diffusion processes. Struct. Chem. Mol. Biol. (1968) https://collections.archives.caltech.edu/repositories/2/archival_objects/20071.

  • Zhu, D. et al. Most cancers-specific microRNA evaluation with a nonenzymatic nucleic acid circuit. ACS Appl. Mater. Interfaces 11, 11220–11226 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. & Benenson, Y. Multi-input RNAi-based logic circuit for identification of particular most cancers cells. Sci. (80-.) 333, 1307–1311 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Choi, H. M. T. et al. Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat. Biotechnol. 28, 1208–1212 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Supply hyperlink

    Leave a Reply

    Your email address will not be published.